3.88 \(\int (a+b \sec ^2(e+f x))^{3/2} \sin ^2(e+f x) \, dx\)

Optimal. Leaf size=161 \[ \frac {b \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{f}+\frac {\sqrt {a} (a-3 b) \tan ^{-1}\left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{2 f}+\frac {\sqrt {b} (3 a-b) \tanh ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{2 f}-\frac {\sin (e+f x) \cos (e+f x) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}{2 f} \]

[Out]

1/2*(a-3*b)*arctan(a^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))*a^(1/2)/f+1/2*(3*a-b)*arctanh(b^(1/2)*tan(f*
x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))*b^(1/2)/f+b*(a+b+b*tan(f*x+e)^2)^(1/2)*tan(f*x+e)/f-1/2*cos(f*x+e)*sin(f*x+e)
*(a+b+b*tan(f*x+e)^2)^(3/2)/f

________________________________________________________________________________________

Rubi [A]  time = 0.20, antiderivative size = 161, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {4132, 467, 528, 523, 217, 206, 377, 203} \[ \frac {b \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{f}+\frac {\sqrt {a} (a-3 b) \tan ^{-1}\left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{2 f}+\frac {\sqrt {b} (3 a-b) \tanh ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{2 f}-\frac {\sin (e+f x) \cos (e+f x) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}{2 f} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Sec[e + f*x]^2)^(3/2)*Sin[e + f*x]^2,x]

[Out]

(Sqrt[a]*(a - 3*b)*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/(2*f) + ((3*a - b)*Sqrt[b]*A
rcTanh[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/(2*f) + (b*Tan[e + f*x]*Sqrt[a + b + b*Tan[e +
f*x]^2])/f - (Cos[e + f*x]*Sin[e + f*x]*(a + b + b*Tan[e + f*x]^2)^(3/2))/(2*f)

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 467

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e^(n -
1)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q)/(b*n*(p + 1)), x] - Dist[e^n/(b*n*(p + 1)), Int[(e*x)^
(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(m - n + 1) + d*(m + n*(q - 1) + 1)*x^n, x], x], x] /;
FreeQ[{a, b, c, d, e}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[q, 0] && GtQ[m - n + 1, 0] &
& IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 523

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
 c, d, e, f, n}, x]

Rule 528

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Simp[
(f*x*(a + b*x^n)^(p + 1)*(c + d*x^n)^q)/(b*(n*(p + q + 1) + 1)), x] + Dist[1/(b*(n*(p + q + 1) + 1)), Int[(a +
 b*x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*(b*e - a*f + b*e*n*(p + q + 1)) + (d*(b*e - a*f) + f*n*q*(b*c - a*d) + b*
d*e*n*(p + q + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && GtQ[q, 0] && NeQ[n*(p + q + 1) + 1
, 0]

Rule 4132

Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_)]^(m_), x_Symbol] :> With[{ff = Fr
eeFactors[Tan[e + f*x], x]}, Dist[ff^(m + 1)/f, Subst[Int[(x^m*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/2), x]^p)/(
1 + ff^2*x^2)^(m/2 + 1), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && Integer
Q[n/2]

Rubi steps

\begin {align*} \int \left (a+b \sec ^2(e+f x)\right )^{3/2} \sin ^2(e+f x) \, dx &=\frac {\operatorname {Subst}\left (\int \frac {x^2 \left (a+b+b x^2\right )^{3/2}}{\left (1+x^2\right )^2} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac {\cos (e+f x) \sin (e+f x) \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}{2 f}+\frac {\operatorname {Subst}\left (\int \frac {\sqrt {a+b+b x^2} \left (a+b+4 b x^2\right )}{1+x^2} \, dx,x,\tan (e+f x)\right )}{2 f}\\ &=\frac {b \tan (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{f}-\frac {\cos (e+f x) \sin (e+f x) \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}{2 f}+\frac {\operatorname {Subst}\left (\int \frac {2 \left (a^2-b^2\right )+2 (3 a-b) b x^2}{\left (1+x^2\right ) \sqrt {a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{4 f}\\ &=\frac {b \tan (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{f}-\frac {\cos (e+f x) \sin (e+f x) \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}{2 f}+\frac {(a (a-3 b)) \operatorname {Subst}\left (\int \frac {1}{\left (1+x^2\right ) \sqrt {a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{2 f}+\frac {((3 a-b) b) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{2 f}\\ &=\frac {b \tan (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{f}-\frac {\cos (e+f x) \sin (e+f x) \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}{2 f}+\frac {(a (a-3 b)) \operatorname {Subst}\left (\int \frac {1}{1+a x^2} \, dx,x,\frac {\tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{2 f}+\frac {((3 a-b) b) \operatorname {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {\tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{2 f}\\ &=\frac {\sqrt {a} (a-3 b) \tan ^{-1}\left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{2 f}+\frac {(3 a-b) \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{2 f}+\frac {b \tan (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{f}-\frac {\cos (e+f x) \sin (e+f x) \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}{2 f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 5.76, size = 493, normalized size = 3.06 \[ \frac {e^{-i (e+f x)} \cos ^3(e+f x) \sqrt {4 b+a e^{-2 i (e+f x)} \left (1+e^{2 i (e+f x)}\right )^2} \left (\frac {i \left (-1+e^{2 i (e+f x)}\right ) \left (a \left (1+e^{2 i (e+f x)}\right )^2-4 b e^{2 i (e+f x)}\right )}{\left (1+e^{2 i (e+f x)}\right )^2}+\frac {2 e^{2 i (e+f x)} \left (-i \sqrt {a} (a-3 b) \log \left (\sqrt {a} \sqrt {a \left (1+e^{2 i (e+f x)}\right )^2+4 b e^{2 i (e+f x)}}+a e^{2 i (e+f x)}+a+2 b\right )+i \sqrt {a} (a-3 b) \log \left (\sqrt {a} \sqrt {a \left (1+e^{2 i (e+f x)}\right )^2+4 b e^{2 i (e+f x)}}+a e^{2 i (e+f x)}+a+2 b e^{2 i (e+f x)}\right )+2 \sqrt {b} (b-3 a) \log \left (\frac {f \left (\sqrt {b} \left (-1+e^{2 i (e+f x)}\right )-i \sqrt {a \left (1+e^{2 i (e+f x)}\right )^2+4 b e^{2 i (e+f x)}}\right )}{b (b-3 a) \left (1+e^{2 i (e+f x)}\right )}\right )+2 \sqrt {a} f x (a-3 b)\right )}{\sqrt {a \left (1+e^{2 i (e+f x)}\right )^2+4 b e^{2 i (e+f x)}}}\right ) \left (a+b \sec ^2(e+f x)\right )^{3/2}}{2 \sqrt {2} f (a \cos (2 e+2 f x)+a+2 b)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sec[e + f*x]^2)^(3/2)*Sin[e + f*x]^2,x]

[Out]

(Sqrt[4*b + (a*(1 + E^((2*I)*(e + f*x)))^2)/E^((2*I)*(e + f*x))]*Cos[e + f*x]^3*((I*(-1 + E^((2*I)*(e + f*x)))
*(-4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2))/(1 + E^((2*I)*(e + f*x)))^2 + (2*E^((2*I)*(e + f*
x))*(2*Sqrt[a]*(a - 3*b)*f*x - I*Sqrt[a]*(a - 3*b)*Log[a + 2*b + a*E^((2*I)*(e + f*x)) + Sqrt[a]*Sqrt[4*b*E^((
2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2]] + I*Sqrt[a]*(a - 3*b)*Log[a + a*E^((2*I)*(e + f*x)) + 2*b*E^
((2*I)*(e + f*x)) + Sqrt[a]*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2]] + 2*Sqrt[b]*(-3*a +
 b)*Log[((Sqrt[b]*(-1 + E^((2*I)*(e + f*x))) - I*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2]
)*f)/(b*(-3*a + b)*(1 + E^((2*I)*(e + f*x))))]))/Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2]
)*(a + b*Sec[e + f*x]^2)^(3/2))/(2*Sqrt[2]*E^(I*(e + f*x))*f*(a + 2*b + a*Cos[2*e + 2*f*x])^(3/2))

________________________________________________________________________________________

fricas [B]  time = 2.07, size = 1535, normalized size = 9.53 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(f*x+e)^2)^(3/2)*sin(f*x+e)^2,x, algorithm="fricas")

[Out]

[-1/16*(sqrt(-a)*(a - 3*b)*cos(f*x + e)*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e)^6 + 32*(5*
a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b
+ 7*a^2*b^2 - a*b^3)*cos(f*x + e)^2 + 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 2*(5*a^3 -
14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x +
e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e)) + 2*(3*a - b)*sqrt(b)*cos(f*x + e)*log(((a^2 - 6*a*b + b^2)*cos(f*x +
e)^4 + 8*(a*b - b^2)*cos(f*x + e)^2 - 4*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(b)*sqrt((a*cos(f*x +
e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e) + 8*b^2)/cos(f*x + e)^4) + 8*(a*cos(f*x + e)^2 - b)*sqrt((a*cos(f*x + e
)^2 + b)/cos(f*x + e)^2)*sin(f*x + e))/(f*cos(f*x + e)), 1/16*(4*(3*a - b)*sqrt(-b)*arctan(-1/2*((a - b)*cos(f
*x + e)^3 + 2*b*cos(f*x + e))*sqrt(-b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((a*b*cos(f*x + e)^2 + b^2)
*sin(f*x + e)))*cos(f*x + e) - sqrt(-a)*(a - 3*b)*cos(f*x + e)*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*
cos(f*x + e)^6 + 32*(5*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b
^4 - 32*(a^4 - 7*a^3*b + 7*a^2*b^2 - a*b^3)*cos(f*x + e)^2 + 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f
*x + e)^5 + 2*(5*a^3 - 14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x + e))*sqrt
(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e)) - 8*(a*cos(f*x + e)^2 - b)*sqrt((a*cos(f*x + e)
^2 + b)/cos(f*x + e)^2)*sin(f*x + e))/(f*cos(f*x + e)), -1/8*((a - 3*b)*sqrt(a)*arctan(1/4*(8*a^2*cos(f*x + e)
^5 - 8*(a^2 - a*b)*cos(f*x + e)^3 + (a^2 - 6*a*b + b^2)*cos(f*x + e))*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(
f*x + e)^2)/((2*a^3*cos(f*x + e)^4 - a^2*b + a*b^2 - (a^3 - 3*a^2*b)*cos(f*x + e)^2)*sin(f*x + e)))*cos(f*x +
e) + (3*a - b)*sqrt(b)*cos(f*x + e)*log(((a^2 - 6*a*b + b^2)*cos(f*x + e)^4 + 8*(a*b - b^2)*cos(f*x + e)^2 - 4
*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e)
+ 8*b^2)/cos(f*x + e)^4) + 4*(a*cos(f*x + e)^2 - b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e))/
(f*cos(f*x + e)), -1/8*((a - 3*b)*sqrt(a)*arctan(1/4*(8*a^2*cos(f*x + e)^5 - 8*(a^2 - a*b)*cos(f*x + e)^3 + (a
^2 - 6*a*b + b^2)*cos(f*x + e))*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((2*a^3*cos(f*x + e)^4 - a
^2*b + a*b^2 - (a^3 - 3*a^2*b)*cos(f*x + e)^2)*sin(f*x + e)))*cos(f*x + e) - 2*(3*a - b)*sqrt(-b)*arctan(-1/2*
((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(-b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((a*b*cos(f*x
 + e)^2 + b^2)*sin(f*x + e)))*cos(f*x + e) + 4*(a*cos(f*x + e)^2 - b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)
^2)*sin(f*x + e))/(f*cos(f*x + e))]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \sin \left (f x + e\right )^{2}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(f*x+e)^2)^(3/2)*sin(f*x+e)^2,x, algorithm="giac")

[Out]

integrate((b*sec(f*x + e)^2 + a)^(3/2)*sin(f*x + e)^2, x)

________________________________________________________________________________________

maple [C]  time = 1.26, size = 1583, normalized size = 9.83 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sec(f*x+e)^2)^(3/2)*sin(f*x+e)^2,x)

[Out]

1/2/f*(6*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),1/(2*I*a^(1/2)*b^(1/2)+
a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*2^(1/2)*((I*a^(1/
2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))/(a+b))^(1/2)*(-2*(I*a^(1/2)*b^(1/2)*cos
(f*x+e)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e))/(a+b))^(1/2)*cos(f*x+e)^2*sin(f*x+e)*a*b-2*cos(f*x+e)
^2*sin(f*x+e)*2^(1/2)*((I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))/(a+b))^(
1/2)*(-2*(I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e))/(a+b))^(1/2)*EllipticP
i((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*
a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*b^2+2*sin(f*x+e)*cos(f*x+e)^2*2^(1/
2)*((I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))/(a+b))^(1/2)*(-2*(I*a^(1/2)
*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e))/(a+b))^(1/2)*EllipticPi((-1+cos(f*x+e))*(
(2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),-1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+
b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*a^2-6*sin(f*x+e)*cos(f*x+e)^2*2^(1/2)*((I*a^(1/2)*b^(
1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))/(a+b))^(1/2)*(-2*(I*a^(1/2)*b^(1/2)*cos(f*x+e
)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e))/(a+b))^(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/
2)+a-b)/(a+b))^(1/2)/sin(f*x+e),-1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((
2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*a*b-sin(f*x+e)*cos(f*x+e)^2*2^(1/2)*((I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^
(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))/(a+b))^(1/2)*(-2*(I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)-
a*cos(f*x+e)-b)/(1+cos(f*x+e))/(a+b))^(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/
sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*a^2+cos(f*x+e)^2*sin(f*x+
e)*2^(1/2)*((I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))/(a+b))^(1/2)*(-2*(I
*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e))/(a+b))^(1/2)*EllipticF((-1+cos(f*
x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-
b^2)/(a+b)^2)^(1/2))*b^2-((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*cos(f*x+e)^5*a^2+((2*I*a^(1/2)*b^(1/2)+a-b)/(
a+b))^(1/2)*cos(f*x+e)^4*a^2+((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*cos(f*x+e)*b^2-((2*I*a^(1/2)*b^(1/2)+a-b)
/(a+b))^(1/2)*b^2)*cos(f*x+e)*((b+a*cos(f*x+e)^2)/cos(f*x+e)^2)^(3/2)*sin(f*x+e)/(-1+cos(f*x+e))/(b+a*cos(f*x+
e)^2)^2/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \sin \left (f x + e\right )^{2}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(f*x+e)^2)^(3/2)*sin(f*x+e)^2,x, algorithm="maxima")

[Out]

integrate((b*sec(f*x + e)^2 + a)^(3/2)*sin(f*x + e)^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\sin \left (e+f\,x\right )}^2\,{\left (a+\frac {b}{{\cos \left (e+f\,x\right )}^2}\right )}^{3/2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(e + f*x)^2*(a + b/cos(e + f*x)^2)^(3/2),x)

[Out]

int(sin(e + f*x)^2*(a + b/cos(e + f*x)^2)^(3/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(f*x+e)**2)**(3/2)*sin(f*x+e)**2,x)

[Out]

Timed out

________________________________________________________________________________________